

University Enrollment Analytics with OAC on ADW

Tim Vlamis, Vlamis Software Solutions

Copyright © 2023, Vlamis Software Solutions, Inc.

Bowie State University

- 150+ years old
- Oldest Historically Black College and University in Maryland
- Located between Washington DC and Baltimore MD
- Part of the University System of Maryland
- 23 undergraduate, 19 master's, 2 doctoral programs
- Enrollment over 6,300
 - ~5,400 UNG
 - ~900 GRAD
- Over 1,000 degrees awarded annually

Vlamis Software Solutions

- Vlamis Software founded in 1992 in Kansas City, Missouri
- Developed 400+ Oracle BI and analytics systems
- Specializes in Oracle-based:
 - Enterprise Business Intelligence & Analytics
 - Analytic Warehousing
 - Machine Learning and Predictive Analytics
 - Data Visualization
 - ETL and data integration
- Multiple Oracle ACEs, consultants average 15+ years
- Creators of the Force Directed Graph Plugin on Oracle Analytics Library
- www.vlamis.com (blog, papers, newsletters, services)
- Co-authors of book "Data Visualization for OBI 11g"

ACE Director

Office of Planning, Analysis and Accountability (OPAA)

IR Responsibilities:

- Data Reporting (federal, state, system)
- Enrollment analysis
 - Student retention, progression, graduation, student profiles, fact book
- Grade analysis
 - Midterm analysis, success rates, etc
- Surveys
 - Internal entering student, current student, graduating student satisfaction, course evaluations, ad hoc
 - External US News, CUPA, AAUP, VSE, etc
- Enrollment Projections

IE Responsibilities:

- Narrative Reporting (state, system)
- NCAA / USDOE reporting
- Curriculum management
- Accreditation regional / specialized
- Strategic planning
- Planning & budgeting
- SLO and other assessment activities
- President and Provost projects
- Data warehouse and Post Graduation outcomes

Analytics Development in 2 Phases

- BSU was using a combination of direct SQL queries, PeopleSoft reports (Campus Solutions), Tableau, and lots of MS Excel
- Oracle proposed OAC and ADW combo
- BSU and Oracle brought in Vlamis
- Phase 1 Demonstrate quick results with Postgrad Analytics
- Phase 2 Design and implement Enrollment Analytics on ADW

Different Approaches for Projects

- Post grad analytics used ADW and OAC data sets with DV
- Enrollment analytics used ODI from PeopleSoft to ADW
 - Developed Enrollment Subject Area in OAC repository
 - Compared Classic vs. DV front end
- Trade off of speed, expense, complexity, robustness and longevity

Enrollment Analytics

- Uses ODI for ETL from PeopleSoft on-prem to ADW
- ADW to OAC repository
- Enrollment Subject Area designed from scratch
- Client chose DV interface over Classic

- ▲ 🔲 Enrollment_Dev
 - 🕨 🗋 Calendar
 - College
 - Academic Plan
 - Student
 - Class
 - 🕨 🗋 Term
 - Student Enrollment
 - Class Enrollment
- My Calculations
 - Value Labels

Copyright © 2023, Vlamis Software Solutions, Inc.

Enrollment Analytics

- Collaborated with BSU and Sierra Cedar SMEs
- Determined initial set of PeopleSoft tables
 - Most important was use of PS_STDNT_ENRL and not PS_STDNT_CAR_TERM for enrollment fact table
 - Enrollment events, not current state of student enrollment by career
- Dimensional, hierarchical view of data different than transactional state view of data
- Does not include admission, grades/progress, degree, postgrad
- Individual student headcount enrollments AND class enrollments
- Academic years vs calendar years

Enrollment Data Challenges

- Lots of PeopleSoft data inconsistencies
- Academic year vs calendar year
 - (settled on eliminating academic year 2022 to "catch up"
- Class sessions and naming inconsistencies
- Latest change date used to determine slowly changing dimension values (BSU reporting not always consistent)
- Cohort and status determination challenges (first enrolled date)

Classic vs Data Visualization Demo

- Develop examples on both and demo pros and cons
- BSU stakeholders see progress on project
- Discuss classic vs DV front end.
- Ultimately make decision on deployment before invest too much time
- Receive feedback on options in deployment
 - Prompt placement and style
 - Naming and titles
 - Graph and table design
 - Color palettes and assignments any BSU standards?
 - Key messages in first dashboard page? Doesn't update much daily?

Good Questions Guide Priorities

- What is the key message or insight?
- Which is more important, this or that?
- What comparison do you want? Difference? Percentage difference? Etc.
- This version emphasizes this, this other version emphasizes that, which do you prefer?
- What do you want everyone else to understand from this?
- Would you rather we spend time on this or that?
- Who else in your team will use this? Will others outside your team use this version?
- Currently we have x hours estimated to work on this, which is (high, low, average), sound right?

Oracle Analytics addresses the needs of the entire analytics workflow

Copyright © 2023, Vlamis Software Solutions, Inc.

Existed before DV front end

DV things to demo

- Create custom calculation
- Layout of screen is drag and drop WYSIWYG, free style layout
- Use grammar pane to rotate a dimension, add a column
- Change type of visualization
- Formatting tables, pivot tables
- Trellising in all vizes
- Property pane in all vizes
- Filtering dashboard level (pinned), canvas level (up top), viz
- Brushing, selection, right-click

DV Bonuses

- Data preparation
- Data flows
- Machine learning

Classic things to demo

- Create custom calculation
- Edit dashboard UI is classic table presentation of screen
- Dashboard is made up of analyses-queries and views in layouts
- Add different visualization to layouts
- Sections can be expanded/collapsed and based on conditions
- Formatting tables, pivot tables
- Prompts are a separate object reusable
- Right-click menus data actions
- Selection steps extra data filtering

Answers and Dashboards SWOT

Strengths

- Highly designed dashboards
- Query definition power
- Prompts and selection steps
- Good control of table formats
- Decent selection of graphs
- Hierarchical columns

Opportunities

Ability to set standards

Weaknesses

- Dynamic layout WYSIWYG
- High training costs
- Endlessly deep menus
- Poor dashboard layout tool

Threats

- Visual analytics and data discovery tools
- Poorly designed repositories

Data Visualization SWOT

Strengths

- Extremely interactive
- Framework for brushing
- Mashup
- No RPD required
- Data source connections
- Leverages Oracle security

Opportunities

- Machine learning is promising
- Data Flows transform data

Weaknesses

- Highly designed dashboards
- Weak documentation

Threats

- Starting from behind
- Users already love Tableau and PowerBI

Advantages of DV Interface

- Area of Oracle investment
- More modern interface
- Simpler interface for ad-hoc use
- More interactive e.g. brushing
- Competes with Tableau and other more modern BI tools
- Ability to use external data NO RPD mapping required!
- Mash up with external data (including spreadsheets and cloud)
- Integrated machine learning, AI, and NLP (natural language)
- Extend with custom visualizations
- Emphasis on self-service

Extra DV Features

- New conditional formatting primitives including ordering
- Mobile-ready
- Embeddable in other web applications
- Data preparation and data flows wrangle data
- Machine learning primitives
- Auto Insights. Can tell user where the story is.
- Adhoc exploration of data not defined by RPD

Reasons for Classic Answers / Dashboards

- Investment in current dashboards and reports
- Answers allows more control e.g. font control
- Highly customized reports custom queries
- Prompts have different capabilities (exist as prompt objects)
- More control over layout, especially of tables
- Can use repository variables (not in DV yet, but soon)
- Selection steps and custom groups post-aggregation

Post Graduate Outcomes Project

- BSU Strategic Plan Objective 3.4
 - Construct an analytics capacity (first to launch)
- Title III HBGI Activity
 - Enhancing Institutional Effectiveness, Academic, and Student Success Through Data Analytics

✓ Phase I – Identifying data warehouse and analytics tools

- Oracle Autonomous Data Warehouse (ADW) & Oracle Analytics Cloud (OAC)
- Phase II Build initial data structures to support academic decision making and student success
 - SOW 1 Create initial data integrations from Peoplesoft to ADW
 - ✓ SOW 2 Create data structures for tracking reenrollment of bachelor's degree recipients

Tracking Re-enrollment of Bachelor's Degree Recipients

- Why
 - Demonstrate effectiveness of BSU's academic programs
 - Post Graduation Reenrollment
 - Post Graduation Earnings (future)
 - Meet programmatic specialized accreditation requirements
 - Create a sustained and accessible data integration and visualization process

Oracle Technologies Involved

- Oracle Autonomous Database (ADW)
 - Loaded data into ADW via ADW Database Actions ("ADW Tools")
 - Transformed data using SQL Developer SQL UNPIVOT
- Oracle Analytics Cloud (OAC)
 - Used Data Flows to create hierarchy of codes
 - Used Multi-table dataset to access data directly from ADW
 - Using RPD for enrollment analytics, but not for this postgrad project

Copyright © 2023, Vlamis Software Solutions, Inc.

SOFTWARE SOLUTIONS

Tracking Reenrollment of Bachelor's Degree Recipients – Data Sources

Copyright © 2023, Vlamis Software Solutions, Inc.

Data Strategy for Post Grad

- Trade off **development speed** vs quality
 - Used multi-table data sets rather than RPD
 - RPD development and ADW base model not complete
- Had to consider modeling in ADW vs OAC
- Custom calculations to be done in front end
- Move modeling "down the stack" in the future

B ™ ~
Search
🖌 🕞 Joined Dataset
PG_BSU_STUD
PG_NSC_STUD
PG_NSC_BYPGYR
PG_BSU_CIP
PG_NSC_Deg4Y_CIP
PG_NSCbyPGYr_Enroll4Y_CIP
PG_BSU_STUD_JoinYr
My Calculations

🗘 Value Labels

Data Sources – Ad Hoc and Warehouse

- Created summary file for BSU students
- Loaded data into ADW using Database Tools utility
 - Decided to use power of ADW vs OAC data sets
 - 3 major sources BSU, Clearing House, CIP
- Used staging tables to facilitate unpivot transforms for clearing house data
 - Post grad years 1 8 table PG_NSC_byPGYr
 - Creates 8 records per student, one for each year
- Had to clean up and create short titles for CIP data

Data Sources – Student Data

- Main Student Table from BSU has one record per student
- Compiled data from PeopleSoft tables

© 2023,	Vlamis	Software	Solutions	s, Inc.		

Copyright

D PG	BSU_STUD
Α	COLLECTION_TERM
Α	COLLECTION_YEAR
Α	OPEID
Α	LOCAL_CAMPUS_STUDENT_IDENTIFIER
#	# BSU Students
• •	DEGREE_DATE
#	FIELD6
Α	DEGREE_SOUGHT
Α	PROGRAM_TAXONOMY
#	CUMULATIVE_GPA
#	CUMULATIVE_NATIVE_CREDITS_EARNED
#	CUMULATIVE_DEGREE_CREDITS_HOURS_AWARDED
Α	ENTRY_TERM
Α	ENTRY_YEAR
#	CREDIT_HOURS_REQUIRED_TO_EARN_AWARD
Α	GENDER
Α	US_CITIZENSHIP
Α	HISPANIC_LATINO_ETHNICITY
Α	WHITE
Α	BLACK_AFRICAN_AMERICAN
Α	ASIAN
Α	AMERICAN_INDIAN_NATIVE_ALASKAN
Α	NATIVE_HAWAIIAN_PAC_IS
• •	DIS_FY_2014_2021L_BIRTHDATE
Α	ETH_97
#	EST_AGE_YR
Α	AID_YR
Α	DESCR
Α	HEGIS
Α	PROGRAM_NAME
A	CIP

Data Sources – CIP Codes – Topics of Study

- CIP Codes maintained by IES National Center for Educational Statistics
- Updated in 2010, 2020 "Crosswalk"
- Website listing

https://nces.ed.gov/ipeds/cipcode/browse.aspx?y=55

- "There's a code for that."
- Classification of Instructional Programing

Data Munging/blending/mashup/wrangling

- 3rd party syndicated data
 - One file per year
 - Recast and pivot the data
 - Some questions on format
 - EXTREMELY long titles, more than 128 characters
 - Merged records into single file
- Joins
 - Used left outer joins to maintain completeness
- Bowie state definitions vs syndicated
- Basic star facts and dimensions

createclearinghouseYR1.txt

	1	CREATE TABLE "STUDENTANALYTICS"."CLEARINGHOUSEYR1"
	2	("ENTERING_COHORT_YEAR" NUMBER,
	3	"REQUESTOR_RETURN_FIELD" VARCHAR2(4000) COLLATE "USING_NLS_COMP",
	4	"POST_GRAD_YEAR" NUMBER,
	5	"DATE RANGE" VARCHAR2(4000) COLLATE "USING NLS COMP",
	6	"School Code/Branch of First Different Two-Year Institution Attended" VARCHAR2(4000) COLLATE "USING NLS COMP",
	7	"Name of First Different Two-Year Institution Attended" VARCHAR2(4000) COLLATE "USING NLS COMP",
	8	"Date of First Enrollment at First Different Two-Year Institution" NUMBER,
	9	"CIP Code Associated to Enrollment at Different Two-Year Institution" NUMBER
	10) DEFAULT COLLATION "USING NLS COMP" SEGMENT CREATION IMMEDIATE
	11	PCTFREE 10 PCTUSED 40 INITRANS 10 MAXTRANS 255
	12	COLUMN STORE COMPRESS FOR QUERY HIGH ROW LEVEL LOCKING LOGGING
	13	STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
	14	PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
	15	BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
	16	TABLESPACE "DATA"
	17	as select
	18	"ENTERING_COHORT_YEAR",
	19	"REQUESTOR_RETURN_FIELD",
	20	FROM STUDENTANALYTICS.CLEARINGHOUSE3
	21	UNPIVOT (
	22	("DATE_RANGE",
	23	"School Code/Branch of First Different Two-Year Institution Attended",
	24	"Name of First Different Two-Year Institution Attended",
	25	"Date of First Enrollment at First Different Two-Year Institution",
	26	"CIP Code Associated to Enrollment at Different Two-Year Institution")
	27	FOR "POST_GRAD_YEAR"
	28	IN (
	29	("DATE_RANGE_OF_YEAR_1",
	30	"Year 1: School Code/Branch of First Different Two-Year Institution Attended" ,
	31	"Year 1: Name of First Different Two-Year Institution Attended",
	32	"Year 1: Date of First Enrollment at First Different Two-Year Institution",
	33	"Year 1: CIP Code Associated to Enrollment at Different Two-Year Institution"
	34	
	35	AS 1,
	36	("DATE_RANGE_OF_YEAR_2",
	37	"Year 2: School Code/Branch of First Different Two-Year Institution Attended" ,
	38	"Year 2: Name of First Different Two-Year Institution Attended",
	39	"Year 2: Date of First Enrollment at First Different Two-Year Institution",
Cc	40	"Year 2: CIP Code Associated to Enrollment at Different Two-Year Institution"
	41	

Visualizing Data Results

- Challenges of large tables
- Topic visualization and layout
- Summary to detail
- Cross-dimensional analysis
- Demo

Future Work

- Building a foundation for enrollment analysis
 - ADW Data warehouse project in progress
 - OAC dashboards/canvases design in progress
- Many, many other subject areas
 - Degree analysis
 - Class performance
 - Academic progress
 - Student success

Q&A

Copyright © 2023, Vlamis Software Solutions, Inc.

Tim Vlamis – Vlamis Software Solutions

tvlamis@vlamis.com

Copyright © 2023, Vlamis Software Solutions, Inc.