University Enrollment Analytics with OAC on ADW

Tim Vlamis, Vlamis Software Solutions
Bowie State University

• 150+ years old
• Oldest Historically Black College and University in Maryland
• Located between Washington DC and Baltimore MD
• Part of the University System of Maryland
• 23 undergraduate, 19 master’s, 2 doctoral programs
• Enrollment – over 6,300
 • ~5,400 UNG
 • ~900 GRAD
• Over 1,000 degrees awarded annually
Vlamis Software Solutions

- Vlamis Software founded in 1992 in Kansas City, Missouri
- Developed 400+ Oracle BI and analytics systems
- Specializes in Oracle-based:
 - Enterprise Business Intelligence & Analytics
 - Analytic Warehousing
 - Machine Learning and Predictive Analytics
 - Data Visualization
 - ETL and data integration
- Multiple Oracle ACEs, consultants average 15+ years
- Creators of the Force Directed Graph Plugin on Oracle Analytics Library
- www.vlamis.com (blog, papers, newsletters, services)
- Co-authors of book “Data Visualization for OBI 11g”
Office of Planning, Analysis and Accountability (OPAA)

IR Responsibilities:
• Data Reporting (federal, state, system)
• Enrollment analysis
 • Student retention, progression, graduation, student profiles, fact book
• Grade analysis
 • Midterm analysis, success rates, etc
• Surveys
 • Internal - entering student, current student, graduating student satisfaction, course evaluations, ad hoc
 • External – US News, CUPA, AAUP, VSE, etc
• Enrollment Projections

IE Responsibilities:
• Narrative Reporting (state, system)
• NCAA / USDOE reporting
• Curriculum management
• Accreditation – regional / specialized
• Strategic planning
• Planning & budgeting
• SLO and other assessment activities
• President and Provost projects
• Data warehouse and Post Graduation outcomes
Analytics Development in 2 Phases

- BSU was using a combination of direct SQL queries, PeopleSoft reports (Campus Solutions), Tableau, and lots of MS Excel
- Oracle proposed OAC and ADW combo
- BSU and Oracle brought in Vlamis
- Phase 1 – Demonstrate quick results with Postgrad Analytics
- Phase 2 – Design and implement Enrollment Analytics on ADW
Different Approaches for Projects

- Post grad analytics used ADW and OAC data sets with DV
- Enrollment analytics used ODI from PeopleSoft to ADW
 - Developed Enrollment Subject Area in OAC repository
 - Compared Classic vs. DV front end
- Trade off of speed, expense, complexity, robustness and longevity
Enrollment Analytics

- Uses ODI for ETL from PeopleSoft on-prem to ADW
- ADW to OAC repository
- Enrollment Subject Area designed from scratch
- Client chose DV interface over Classic
Enrollment Analytics

- Collaborated with BSU and Sierra Cedar SMEs
- Determined initial set of PeopleSoft tables
 - Most important was use of PS_STDNT_ENRL and not PS_STDNT_CAR_TERM for enrollment fact table
 - Enrollment events, not current state of student enrollment by career

- Dimensional, hierarchical view of data different than transactional state view of data
- Does not include admission, grades/progress, degree, postgrad
- Individual student headcount enrollments AND class enrollments
- Academic years vs calendar years
Enrollment Data Challenges

- Lots of PeopleSoft data inconsistencies
- Academic year vs calendar year
 - (settled on eliminating academic year 2022 to “catch up”)
- Class sessions and naming inconsistencies
- Latest change date used to determine slowly changing dimension values (BSU reporting not always consistent)
- Cohort and status determination challenges (first enrolled date)
Classic vs Data Visualization Demo

- Develop examples on both and demo pros and cons
- BSU stakeholders see progress on project
- Discuss classic vs DV front end.
- Ultimately make decision on deployment before invest too much time
- Receive feedback on options in deployment
 - Prompt placement and style
 - Naming and titles
 - Graph and table design
 - Color palettes and assignments – any BSU standards?
 - Key messages in first dashboard page? Doesn’t update much daily?
Good Questions Guide Priorities

- What is the key message or insight?
- Which is more important, this or that?
- This version emphasizes this, this other version emphasizes that, which do you prefer?
- What do you want everyone else to understand from this?
- Would you rather we spend time on this or that?
- Who else in your team will use this? Will others outside your team use this version?
- Currently we have x hours estimated to work on this, which is (high, low, average), sound right?
Oracle Analytics addresses the needs of the entire analytics workflow

<table>
<thead>
<tr>
<th>Connect</th>
<th>Model</th>
<th>Prepare</th>
<th>Explore</th>
<th>Experience</th>
<th>Collaborate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Centralized and governed semantic models</td>
<td>Import external and personal data sets</td>
<td>Interactive data visualization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-service machine learning</td>
<td></td>
<td></td>
<td>AI natural language narratives</td>
<td>Analytics catalog</td>
</tr>
<tr>
<td></td>
<td>Advanced user machine learning</td>
<td></td>
<td></td>
<td>Web</td>
<td>Social networking</td>
</tr>
<tr>
<td></td>
<td>Interactive data transformation and cleansing</td>
<td></td>
<td>ML insights</td>
<td></td>
<td>Reports and dashboards</td>
</tr>
<tr>
<td></td>
<td>Role based security</td>
<td>Smart data profiling</td>
<td>AI natural language search</td>
<td>Custom visualizations</td>
<td>Productivity tool integration</td>
</tr>
<tr>
<td></td>
<td>Self-service data modeling</td>
<td>Data enrichment</td>
<td>One-click advanced analytics</td>
<td>Embed into external web apps</td>
<td>Multi-user development</td>
</tr>
<tr>
<td></td>
<td>Multi-table data sets</td>
<td>Scheduled data flows</td>
<td>Metadata and data search</td>
<td></td>
<td>Mobile</td>
</tr>
</tbody>
</table>

Existed before DV front end
DV things to demo

- Create custom calculation
- Layout of screen is drag and drop – WYSIWYG, free style layout
- Use grammar pane to rotate a dimension, add a column
- Change type of visualization
- Formatting tables, pivot tables
- Trellising – in all vizes
- Property pane – in all vizes
- Filtering – dashboard level (pinned), canvas level (up top), viz
- Brushing, selection, right-click
DV Bonuses

- Data preparation
- Data flows
- Machine learning
Classic things to demo

- Create custom calculation
- Edit dashboard – UI is classic table presentation of screen
- Dashboard is made up of analyses-queries and views in layouts
- Add different visualization to layouts
- Sections can be expanded/collapsed and based on conditions
- Formatting tables, pivot tables
- Prompts are a separate object – reusable
- Right-click menus – data actions
- Selection steps – extra data filtering
Answers and Dashboards SWOT

Strengths
- Highly designed dashboards
- Query definition power
- Prompts and selection steps
- Good control of table formats
- Decent selection of graphs
- Hierarchical columns

Weaknesses
- Dynamic layout WYSIWYG
- High training costs
- Endlessly deep menus
- Poor dashboard layout tool

Opportunities
- Ability to set standards

Threats
- Visual analytics and data discovery tools
- Poorly designed repositories
Data Visualization SWOT

Strengths
- Extremely interactive
- Framework for brushing
- Mashup
- No RPD required
- Data source connections
- Leverages Oracle security

Weaknesses
- Highly designed dashboards
- Weak documentation

Opportunities
- Machine learning is promising
- Data Flows transform data

Threats
- Starting from behind
- Users already love Tableau and PowerBI
Advantages of DV Interface

- Area of Oracle investment
- More modern interface
- Simpler interface for ad-hoc use
- More interactive – e.g. brushing
- Competes with Tableau and other more modern BI tools
- Ability to use external data – NO RPD mapping required!
- Mash up with external data (including spreadsheets and cloud)
- Integrated machine learning, AI, and NLP (natural language)
- Extend with custom visualizations
- Emphasis on self-service
Extra DV Features

- New conditional formatting primitives including ordering
- Mobile-ready
- Embeddable in other web applications
- Data preparation and data flows wrangle data
- Machine learning primitives
- Auto Insights. Can tell user where the story is.
- Adhoc exploration of data not defined by RPD
Reasons for Classic Answers / Dashboards

- Investment in current dashboards and reports
- Answers allows more control – e.g. font control
- Highly customized reports – custom queries
- Prompts have different capabilities (exist as prompt objects)
- More control over layout, especially of tables
- Can use repository variables (not in DV yet, but soon)
- Selection steps and custom groups – post-aggregation
Post Graduate Outcomes Project

• BSU Strategic Plan – Objective 3.4
 • Construct an analytics capacity (first to launch)

• Title III HBGI Activity
 • Enhancing Institutional Effectiveness, Academic, and Student Success Through Data Analytics
 ✓ Phase I – Identifying data warehouse and analytics tools
 • Oracle Autonomous Data Warehouse (ADW) & Oracle Analytics Cloud (OAC)
 • Phase II – Build initial data structures to support academic decision making and student success
 • SOW 1 – Create initial data integrations from Peoplesoft to ADW
 ✓ SOW 2 – Create data structures for tracking reenrollment of bachelor’s degree recipients
Tracking Re-enrollment of Bachelor’s Degree Recipients

• Why
 • Demonstrate effectiveness of BSU’s academic programs
 • Post Graduation Reenrollment
 • Post Graduation Earnings (future)
 • Meet programmatic specialized accreditation requirements
 • Create a sustained and accessible data integration and visualization process
Oracle Technologies Involved

• Oracle Autonomous Database (ADW)
 • Loaded data into ADW via ADW Database Actions (“ADW Tools”)
 • Transformed data using SQL Developer – SQL UNPIVOT

• Oracle Analytics Cloud (OAC)
 • Used Data Flows to create hierarchy of codes
 • Used Multi-table dataset to access data directly from ADW
 • Using RPD for enrollment analytics, but not for this postgrad project
Tracking Reenrollment of Bachelor’s Degree Recipients – **Data Sources**

- BSU Degree Recipients
- BSU Student Demographic Information
- National Student Clearinghouse Subsequent Enrollment Matching
- IPEDS Classification of Instructional Programs
Data Strategy for Post Grad

- Trade off - **development speed** vs quality
 - Used multi-table data sets rather than RPD
 - RPD development and ADW base model not complete
- Had to consider modeling in ADW vs OAC
- Custom calculations to be done in front end
- Move modeling “down the stack” in the future
Data Sources – Ad Hoc and Warehouse

• Created summary file for BSU students
• Loaded data into ADW using Database Tools utility
 • Decided to use power of ADW vs OAC data sets
 • 3 major sources – BSU, Clearing House, CIP
• Used staging tables to facilitate unpivot transforms for clearing house data
 • Post grad years 1 – 8 table PG_NSC_byPGYr
 • Creates 8 records per student, one for each year
• Had to clean up and create short titles for CIP data
Data Sources – Student Data

- Main Student Table from BSU has one record per student
- Compiled data from PeopleSoft tables
Data Sources – CIP Codes – Topics of Study

- CIP Codes maintained by IES National Center for Educational Statistics
- Updated in 2010, 2020 “Crosswalk”
- Website listing
- “There’s a code for that.”
- Classification of Instructional Programing
Data Munging/blending/mashup/wrangling

- 3rd party syndicated data
 - One file per year
 - Recast and pivot the data
 - Some questions on format
 - EXTREMELY long titles, more than 128 characters
 - Merged records into single file
- Joins
 - Used left outer joins to maintain completeness
- Bowie state definitions vs syndicated
- Basic star – facts and dimensions
CREATE TABLE "STUDENTANALYTICS"."CLEARINGHOUSEYR1"

("ENTERING_COHORT_YEAR" NUMBER,
 "REQUESTOR_RETURN_FIELD" VARCHAR2(4000) COLLATE "USING_NLS_COMP",
 "POST_GRAD_YEAR" NUMBER,
 "DATE_RANGE" VARCHAR2(4000) COLLATE "USING_NLS_COMP",
 "School Code/Branch of First Different Two-Year Institution Attended" VARCHAR2(4000) COLLATE "USING_NLS_COMP",
 "Name of First Different Two-Year Institution Attended" VARCHAR2(4000) COLLATE "USING_NLS_COMP",
 "Date of First Enrollment at First Different Two-Year Institution" NUMBER,
 "CIP Code Associated to Enrollment at Different Two-Year Institution" NUMBER
) DEFAULT COLLATION "USING_NLS_COMP" SEGMENT CREATION IMMEDIATE
PCTFREE 10 PCTUSED 40 INITRANS 10 MAXTRANS 255
COLUMN_STORE COMPRESS FOR QUERY HIGH ROW LEVEL LOCKING LOGGING
STORAGE(INITIAL 85536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
TABLESPACE "DATA"
as select
"ENTERING_COHORT_YEAR",
"REQUESTOR_RETURN_FIELD",
FROM STUDENTANALYTICS.CLEARINGHOUSE3
UNPIVOT (
("DATE_RANGE",
"School Code/Branch of First Different Two-Year Institution Attended",
"Name of First Different Two-Year Institution Attended",
"Date of First Enrollment at First Different Two-Year Institution",
"CIP Code Associated to Enrollment at Different Two-Year Institution")
FOR "POST_GRAD_YEAR"
IN (
 ("DATE_RANGE_OF_YEAR_1",
"Year 1: School Code/Branch of First Different Two-Year Institution Attended",
"Year 1: Name of First Different Two-Year Institution Attended",
"Year 1: Date of First Enrollment at First Different Two-Year Institution",
"Year 1: CIP Code Associated to Enrollment at Different Two-Year Institution"
)
AS 1,
 ("DATE_RANGE_OF_YEAR_2",
"Year 2: School Code/Branch of First Different Two-Year Institution Attended",
"Year 2: Name of First Different Two-Year Institution Attended",
"Year 2: Date of First Enrollment at First Different Two-Year Institution",
"Year 2: CIP Code Associated to Enrollment at Different Two-Year Institution"
)
AS 2)
Visualizing Data Results

• Challenges of large tables
• Topic visualization and layout
• Summary to detail
• Cross-dimensional analysis

• Demo
Future Work

• Building a foundation for enrollment analysis
 • ADW Data warehouse project in progress
 • OAC dashboards/canvases design in progress
• Many, many other subject areas
 • Degree analysis
 • Class performance
 • Academic progress
 • Student success
Q&A
Thank You!!

Tim Vlamis – Vlamis Software Solutions
tvlamis@vlamis.com